Mobile Monitoring of Cognitive Change (M2C2) Platform#
๐ M2C2 DataKit (m2c2-datakit): Universal Loading, Assurance, and Scoring#
This is the documentation for the M2C2 DataKit Python package ๐, which is part of the M2C2 Platform. The M2C2 Platform is a comprehensive system designed to facilitate the collection, processing, and analysis of mobile cognitive data (aka, ambulatory cognitive assessments, cognitive activities, and brain games).
Use the navigation pane to explore module-level documentation. Each page includes detailed descriptions, functions, classes, and usage examples where available.
๐ A set of R, Python, and NPM packages for scoring M2C2kit Data! ๐
#
Developers:#
-
Dr. Nelson Roque | ORCID: https://orcid.org/0000-0003-1184-202X
-
Dr. Scott Yabiku | ORCID: [Coming soon!]
๐ง Installation#
pip install m2c2-datakit
# or
pip3 install m2c2-datakit
๐ ๏ธ Setup for Developers of this Package#
!make clean
!make dev-install
Changelog#
Source: https://github.com/m2c2-project/datakit
See CHANGELOG.md
๐ฏ Purpose#
Enable researchers to plug in data from varied sources (e.g., MongoDB, UAS, MetricWire, CSV bundles) and apply a consistent pipeline for:
-
Input validation
-
Scoring via predefined rules
-
Inspection and summarization
-
Tidy export and codebook generation
๐ง L.A.S.S.I.E. Pipeline Summary#
| Step | Method | Purpose |
|---|---|---|
| L | LASSIE.load() |
Load raw data from a supported source (e.g., MongoDB, UAS, MetricWire). |
| A | LASSIE.assure() |
Validate that required columns exist before processing. |
| S | LASSIE.score() |
Apply scoring logic based on predefined or custom rules. |
| S | LASSIE.summarize() |
Aggregate scored data by participant, session, or custom groups. |
| I | LASSIE.inspect() |
Visualize distributions or pairwise plots for quality checks. |
| E | LASSIE.export() |
Save scored and summarized data to tidy files and optionally metadata. |
๐ Supported Sources#
You may have used M2C2kit tasks via our various integrations, including the ones listed below. Each integration has its own loader class, which is responsible for reading the data and converting it into a format that can be processed by the m2c2_datakit package. Keep in mind that you are responsible for ensuring that the data is in the correct format for each loader class.
In the future we anticipate creating loaders for downloading data via API.
| Source Type | Loader Class | Key Arguments | Notes |
|---|---|---|---|
mongodb |
MongoDBImporter |
source_path (URL, to JSON) |
Expects flat or nested JSON documents. |
multicsv |
MultiCSVImporter |
source_map (dict of CSV paths) |
Each activity type is its own file. |
metricwire |
MetricWireImporter |
source_path (glob pattern or default) |
Processes JSON files from unzipped export. |
qualtrics |
QualtricsImporter |
source_path (URL to CSV) |
Each activity's trial saves data to a new column. |
uas |
UASImporter |
source_path (URL, to pseudo-JSON) |
Parses newline-delimited JSON. |
๐งช Example: Full Pipeline#
For a full pipeline, go to our repo
๐ Example Pipeline Steps#
Step 1: Load Data#
import m2c2_datakit as m2c2
source_map = {
"Symbol Search": "data/reboot/m2c2kit_manualmerge_symbol_search_all_ts-20250402_151939.csv",
"Grid Memory": "data/reboot/m2c2kit_manualmerge_grid_memory_all_ts-20250402_151940.csv"
}
output_folder = "tidy
mcsv = m2c2.core.pipeline.LASSIE().load(source_name="multicsv", source_map=source_map)
mw = m2c2.core.pipeline.LASSIE().load(source_name="metricwire", source_path="data/metricwire/unzipped/*/*/*.json")
mdb = m2c2.core.pipeline.LASSIE().load(source_name="mongodb", source_path="data/production-mongo-export/data_exported_120424_1010am.json")
uas = m2c2.core.pipeline.LASSIE().load(source_name="UAS", source_path= "https://uas.usc.edu/survey/uas/m2c2_ess/admin/export_m2c2.php?k=<INSERT KEY HERE>")
Step 2: Verify Data#
mcsv.assure(required_columns=m2c2.core.config.settings.STANDARD_GROUPING_FOR_AGGREGATION)
mw.assure(required_columns=m2c2.core.config.settings.STANDARD_GROUPING_FOR_AGGREGATION_METRICWIRE)
mdb.assure(required_columns=m2c2.core.config.settings.STANDARD_GROUPING_FOR_AGGREGATION)
uas.assure(required_columns=m2c2.core.config.settings.STANDARD_GROUPING_FOR_AGGREGATION)
Step 3: Score Data#
mcsv.score()
mw.score()
mdb.score()
uas.score()
Step 4: Inspect Data#
mcsv.inspect()
mw.inspect()
mdb.inspect()
uas.inspect()
Step 5: Summarize Data#
mcsv.summarize(grouping=m2c2.core.config.settings.STANDARD_GROUPING_FOR_AGGREGATION)
mw.summarize(grouping=m2c2.core.config.settings.STANDARD_GROUPING_FOR_AGGREGATION_METRICWIRE)
mdb.summarize(grouping=m2c2.core.config.settings.STANDARD_GROUPING_FOR_AGGREGATION)
uas.summarize(grouping=m2c2.core.config.settings.STANDARD_GROUPING_FOR_AGGREGATION)
Step 6: Export Data#
mcsv.export(file_basename="uas_export", directory=output_folder)
mw.export(file_basename="metricwire_export", directory=output_folder)
mdb.export(file_basename="mongodb_export", directory=output_folder)
uas.export(file_basename="uas_export", directory=output_folder)
Oh yeah, and export the codebook too!#
mcsv.export_codebook(filename="codebook_uas.md", directory=output_folder)
mw.export_codebook(filename="codebook_metricwire.md", directory=output_folder)
mdb.export_codebook(filename="codebook_mongo.md", directory=output_folder)
uas.export_codebook(filename="codebook_uas.md", directory=output_folder)
๐ก Contributions Welcome!#
๐ Have ideas? Found a bug? Want to improve the package? Open an issue!.
๐ Code of Conduct - Please be respectful and follow community guidelines.
Acknowledgements#
The development of m2c2-datakit was made possible with support from NIA (1U2CAG060408-01).
๐ More Resources:#
๐ M2C2kit Official Documentation Website
๐ Pushing to PyPI
- https://docs.astral.sh/uv/guides/integration/github/#setting-up-python
๐ What is JSON?
๐ฌ Inspired by:#

๐ Now, let's go study some brains!